MeanTransform

class MeanTransform(in_column: str, window: int, seasonality: int = 1, alpha: float = 1, min_periods: int = 1, fillna: float = 0, out_column: Optional[str] = None)[source]

Bases: etna.transforms.math.statistics.WindowStatisticsTransform

MeanTransform computes average value for given window.

\[MeanTransform(x_t) = \sum_{i=1}^{window}{x_{t - i}\cdot\alpha^{i - 1}}\]

Init MeanTransform.

Parameters
  • in_column (str) – name of processed column

  • window (int) – size of window to aggregate

  • seasonality (int) – seasonality of lags to compute window’s aggregation with

  • alpha (float) – autoregressive coefficient

  • min_periods (int) – min number of targets in window to compute aggregation; if there is less than min_periods number of targets return None

  • fillna (float) – value to fill results NaNs with

  • out_column (str, optional) – result column name. If not given use self.__repr__()

Inherited-members

Methods

fit(*args)

Fits transform.

fit_transform(df)

May be reimplemented.

inverse_transform(df)

Inverse transforms dataframe.

transform(df)

Compute feature's value.

transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Compute feature’s value.

Parameters

df (pd.DataFrame) – dataframe to generate features for

Returns

result – dataframe with results

Return type

pd.DataFrame