RobustScalerTransform¶
- class RobustScalerTransform(in_column: Optional[Union[str, List[str]]] = None, inplace: bool = True, out_column: Optional[str] = None, with_centering: bool = True, with_scaling: bool = True, quantile_range: Tuple[float, float] = (25, 75), unit_variance: bool = False, mode: Union[etna.transforms.math.sklearn.TransformMode, str] = 'per-segment')[source]¶
Bases:
etna.transforms.math.sklearn.SklearnTransform
Scale features using statistics that are robust to outliers.
Uses
sklearn.preprocessing.RobustScaler
inside.Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Init RobustScalerPreprocess.
- Parameters
in_column (Optional[Union[str, List[str]]]) – columns to be scaled, if None - all columns will be scaled.
inplace (bool) – features are changed by scaled.
out_column (Optional[str]) – base for the names of generated columns, uses
self.__repr__()
if not given.with_centering (bool) – if True, center the data before scaling.
with_scaling (bool) – if True, scale the data to interquartile range.
quantile_range (Tuple[float, float]) – quantile range.
unit_variance (bool) –
If True, scale data so that normally distributed features have a variance of 1.
In general, if the difference between the x-values of q_max and q_min for a standard normal distribution is greater than 1, the dataset will be scaled down. If less than 1, the dataset will be scaled up.
mode (Union[etna.transforms.math.sklearn.TransformMode, str]) –
“macro” or “per-segment”, way to transform features over segments.
If “macro”, transforms features globally, gluing the corresponding ones for all segments.
If “per-segment”, transforms features for each segment separately.
- Raises
ValueError: – if incorrect mode given
- Inherited-members
Methods
fit
(df)Fit transformer with data from df.
fit_transform
(df)May be reimplemented.
inverse_transform
(df)Apply inverse transformation to DataFrame.
transform
(df)Transform given data with fitted transformer.