OneHotEncoderTransform

class OneHotEncoderTransform(in_column: str, out_column: Optional[str] = None)[source]

Bases: etna.transforms.base.Transform

Encode categorical feature as a one-hot numeric features.

If unknown category is encountered during transform, the resulting one-hot encoded columns for this feature will be all zeros.

Init OneHotEncoderTransform.

Parameters
  • in_column (str) – Name of column to be encoded

  • out_column (Optional[str]) – Prefix of names of added columns. If not given, use self.__repr__()

Inherited-members

Methods

fit(df)

Fit One Hot encoder.

fit_transform(df)

May be reimplemented.

inverse_transform(df)

Inverse transforms dataframe.

transform(df)

Encode the in_column by fitted One Hot encoder.

fit(df: pandas.core.frame.DataFrame) etna.transforms.encoders.categorical.OneHotEncoderTransform[source]

Fit One Hot encoder.

Parameters

df (pandas.core.frame.DataFrame) – Dataframe with data to fit the transform

Returns

Fitted transform

Return type

etna.transforms.encoders.categorical.OneHotEncoderTransform

transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Encode the in_column by fitted One Hot encoder.

Parameters

df (pandas.core.frame.DataFrame) – Dataframe with data to transform

Returns

Dataframe with column with encoded values

Return type

pandas.core.frame.DataFrame