LabelEncoderTransform

class LabelEncoderTransform(in_column: str, out_column: Optional[str] = None, strategy: str = ImputerMode.mean)[source]

Bases: etna.transforms.base.Transform

Encode categorical feature with value between 0 and n_classes-1.

Init LabelEncoderTransform.

Parameters
  • in_column (str) – Name of column to be transformed

  • out_column (Optional[str]) – Name of added column. If not given, use self.__repr__()

  • strategy (str) –

    Filling encoding in not fitted values:

    • If “new_value”, then replace missing values with ‘-1’

    • If “mean”, then replace missing values using the mean in encoded column

    • If “none”, then replace missing values with None

Inherited-members

Methods

fit(df)

Fit Label encoder.

fit_transform(df)

May be reimplemented.

inverse_transform(df)

Inverse transforms dataframe.

transform(df)

Encode the in_column by fitted Label encoder.

fit(df: pandas.core.frame.DataFrame) etna.transforms.encoders.categorical.LabelEncoderTransform[source]

Fit Label encoder.

Parameters

df (pandas.core.frame.DataFrame) – Dataframe with data to fit the transform

Returns

Fitted transform

Return type

etna.transforms.encoders.categorical.LabelEncoderTransform

transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Encode the in_column by fitted Label encoder.

Parameters

df (pandas.core.frame.DataFrame) – Dataframe with data to transform

Returns

Dataframe with column with encoded values

Return type

pandas.core.frame.DataFrame