Pipeline

class Pipeline(model: Union[etna.models.base.PerSegmentModel, etna.models.base.PerSegmentPredictionIntervalModel, etna.models.base.MultiSegmentModel], transforms: Sequence[etna.transforms.base.Transform] = (), horizon: int = 1)[source]

Bases: etna.pipeline.base.BasePipeline

Pipeline of transforms with a final estimator.

Create instance of Pipeline with given parameters.

Parameters
Inherited-members

Methods

backtest(ts, metrics[, n_folds, mode, ...])

Run backtest with the pipeline.

fit(ts)

Fit the Pipeline.

forecast([prediction_interval, quantiles, ...])

Make predictions.

fit(ts: etna.datasets.tsdataset.TSDataset) etna.pipeline.pipeline.Pipeline[source]

Fit the Pipeline.

Fit and apply given transforms to the data, then fit the model on the transformed data.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – Dataset with timeseries data

Returns

Fitted Pipeline instance

Return type

etna.pipeline.pipeline.Pipeline

forecast(prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), n_folds: int = 3) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

Parameters
  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval

  • n_folds (int) – Number of folds to use in the backtest for prediction interval estimation

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset