BasePipeline

class BasePipeline(horizon: int)[source]

Bases: etna.pipeline.base.AbstractPipeline, etna.core.mixins.BaseMixin

Base class for pipeline.

Inherited-members

Parameters

horizon (int) –

Methods

backtest(ts, metrics[, n_folds, mode, ...])

Run backtest with the pipeline.

fit(ts)

Fit the Pipeline.

forecast([prediction_interval, quantiles, ...])

Make predictions.

backtest(ts: etna.datasets.tsdataset.TSDataset, metrics: List[etna.metrics.base.Metric], n_folds: Union[int, List[etna.pipeline.base.FoldMask]] = 5, mode: str = 'expand', aggregate_metrics: bool = False, n_jobs: int = 1, joblib_params: Optional[Dict[str, Any]] = None, forecast_params: Optional[Dict[str, Any]] = None) Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame][source]

Run backtest with the pipeline.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset to fit models in backtest

  • metrics (List[etna.metrics.base.Metric]) – List of metrics to compute for each fold

  • n_folds (Union[int, List[etna.pipeline.base.FoldMask]]) – Number of folds or the list of fold masks

  • mode (str) – One of ‘expand’, ‘constant’ – train generation policy, ignored if n_folds is a list of masks

  • aggregate_metrics (bool) – If True aggregate metrics above folds, return raw metrics otherwise

  • n_jobs (int) – Number of jobs to run in parallel

  • joblib_params (Optional[Dict[str, Any]]) – Additional parameters for joblib.Parallel

  • forecast_params (Optional[Dict[str, Any]]) – Additional parameters for forecast()

Returns

metrics_df, forecast_df, fold_info_df – Metrics dataframe, forecast dataframe and dataframe with information about folds

Return type

Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]

forecast(prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), n_folds: int = 3) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

Parameters
  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval

  • n_folds (int) – Number of folds to use in the backtest for prediction interval estimation

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset