ElasticMultiSegmentModel¶
- class ElasticMultiSegmentModel(alpha: float = 1.0, l1_ratio: float = 0.5, fit_intercept: bool = True, normalize: bool = False, **kwargs)[source]¶
Bases:
etna.models.sklearn.SklearnMultiSegmentModel
Class holding
sklearn.linear_model.ElasticNet
for all segments.Create instance of ElasticNet with given parameters.
- Parameters
alpha (float) – Constant that multiplies the penalty terms. Defaults to 1.0.
alpha = 0
is equivalent to an ordinary least square, solved by the LinearRegression object. For numerical reasons, usingalpha = 0
with the Lasso object is not advised. Given this, you should use theLinearMultiSegmentModel
object.l1_ratio (float) –
The ElasticNet mixing parameter, with
0 <= l1_ratio <= 1
.For
l1_ratio = 0
the penalty is an L2 penalty.For
l1_ratio = 1
it is an L1 penalty.For
0 < l1_ratio < 1
, the penalty is a combination of L1 and L2.
fit_intercept (bool) – Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).
normalize (bool) – This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm.
- Inherited-members
Methods
fit
(ts)Fit model.
forecast
(ts)Make predictions.
get_model
()Get internal model that is used inside etna class.