HoltModel

class HoltModel(exponential: bool = False, damped_trend: bool = False, initialization_method: str = 'estimated', initial_level: Optional[float] = None, initial_trend: Optional[float] = None, smoothing_level: Optional[float] = None, smoothing_trend: Optional[float] = None, damping_trend: Optional[float] = None, **fit_kwargs)[source]

Bases: etna.models.holt_winters.HoltWintersModel

Holt etna model.

Restricted version of HoltWinters model.

Notes

We use statsmodels.tsa.holtwinters.ExponentialSmoothing model from statsmodels package. They implement statsmodels.tsa.holtwinters.Holt model as a restricted version of ExponentialSmoothing model.

Init Holt model with given params.

Parameters
  • exponential (bool) –

    Type of trend component. One of:

    • False: additive trend

    • True: multiplicative trend

  • damped_trend (bool) – Should the trend component be damped.

  • initialization_method (str) –

    Method for initialize the recursions. One of:

    • None

    • ’estimated’

    • ’heuristic’

    • ’legacy-heuristic’

    • ’known’

    None defaults to the pre-0.12 behavior where initial values are passed as part of fit. If any of the other values are passed, then the initial values must also be set when constructing the model. If ‘known’ initialization is used, then initial_level must be passed, as well as initial_trend and initial_seasonal if applicable. Default is ‘estimated’. “legacy-heuristic” uses the same values that were used in statsmodels 0.11 and earlier.

  • initial_level (Optional[float]) – The initial level component. Required if estimation method is “known”. If set using either “estimated” or “heuristic” this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters.

  • initial_trend (Optional[float]) – The initial trend component. Required if estimation method is “known”. If set using either “estimated” or “heuristic” this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters.

  • smoothing_level (Optional[float]) – The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value.

  • smoothing_trend (Optional[float]) – The beta value of the Holt’s trend method, if the value is set then this value will be used as the value.

  • damping_trend (Optional[float]) – The phi value of the damped method, if the value is set then this value will be used as the value.

  • fit_kwargs – Additional parameters for calling statsmodels.tsa.holtwinters.ExponentialSmoothing.fit().

Inherited-members

Methods

fit(ts)

Fit model.

forecast(ts)

Make predictions.

get_model()

Get internal models that are used inside etna class.