VotingEnsemble¶
- class VotingEnsemble(pipelines: List[etna.pipeline.base.BasePipeline], weights: Optional[Union[List[float], Literal['auto']]] = None, regressor: Union[sklearn.tree._classes.DecisionTreeRegressor, sklearn.tree._classes.ExtraTreeRegressor, sklearn.ensemble._forest.RandomForestRegressor, sklearn.ensemble._forest.ExtraTreesRegressor, sklearn.ensemble._gb.GradientBoostingRegressor, catboost.core.CatBoostRegressor] = RandomForestRegressor(n_estimators=5), n_folds: int = 3, n_jobs: int = 1, joblib_params: Optional[Dict[str, Any]] = None)[source]¶
Bases:
etna.pipeline.base.BasePipeline
,etna.ensembles.base.EnsembleMixin
VotingEnsemble is a pipeline that forecast future values with weighted averaging of it’s pipelines forecasts.
Examples
>>> from etna.datasets import generate_ar_df >>> from etna.datasets import TSDataset >>> from etna.ensembles import VotingEnsemble >>> from etna.models import NaiveModel >>> from etna.models import ProphetModel >>> from etna.pipeline import Pipeline >>> df = generate_ar_df(periods=30, start_time="2021-06-01", ar_coef=[1.2], n_segments=3) >>> df_ts_format = TSDataset.to_dataset(df) >>> ts = TSDataset(df_ts_format, "D") >>> prophet_pipeline = Pipeline(model=ProphetModel(), transforms=[], horizon=7) >>> naive_pipeline = Pipeline(model=NaiveModel(lag=10), transforms=[], horizon=7) >>> ensemble = VotingEnsemble( ... pipelines=[prophet_pipeline, naive_pipeline], ... weights=[0.7, 0.3] ... ) >>> _ = ensemble.fit(ts=ts) >>> forecast = ensemble.forecast() >>> forecast segment segment_0 segment_1 segment_2 feature target target target timestamp 2021-07-01 -8.84 -186.67 130.99 2021-07-02 -8.96 -198.16 138.81 2021-07-03 -9.57 -212.48 148.48 2021-07-04 -10.48 -229.16 160.13 2021-07-05 -11.20 -248.93 174.39 2021-07-06 -12.47 -281.90 197.82 2021-07-07 -13.51 -307.02 215.73
Init VotingEnsemble.
- Parameters
pipelines (List[etna.pipeline.base.BasePipeline]) – List of pipelines that should be used in ensemble
weights (Optional[Union[List[float], Literal['auto']]]) –
List of pipelines’ weights.
If None, use uniform weights
If List[float], use this weights for the base estimators, weights will be normalized automatically
If “auto”, use importances of the base estimators forecasts as weights of base estimators
regressor (Union[sklearn.tree._classes.DecisionTreeRegressor, sklearn.tree._classes.ExtraTreeRegressor, sklearn.ensemble._forest.RandomForestRegressor, sklearn.ensemble._forest.ExtraTreesRegressor, sklearn.ensemble._gb.GradientBoostingRegressor, catboost.core.CatBoostRegressor]) – Regression model with fit/predict interface which will be used to evaluate weights of the base estimators. It should have
feature_importances_
property (e.g. all tree-based regressors in sklearn)n_folds (int) – Number of folds to use in the backtest. Backtest is used to obtain the forecasts from the base estimators; forecasts will be used to evaluate the estimator’s weights.
n_jobs (int) – Number of jobs to run in parallel
joblib_params (Optional[Dict[str, Any]]) – Additional parameters for
joblib.Parallel
- Raises
ValueError: – If the number of the pipelines is less than 2 or pipelines have different horizons.
- Inherited-members
Methods
backtest
(ts, metrics[, n_folds, mode, ...])Run backtest with the pipeline.
fit
(ts)Fit pipelines in ensemble.
forecast
([prediction_interval, quantiles, ...])Make predictions.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.ensembles.voting_ensemble.VotingEnsemble [source]¶
Fit pipelines in ensemble.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to fit ensemble
- Returns
Fitted ensemble
- Return type
self