_OneSegmentSpecialDaysTransform

class _OneSegmentSpecialDaysTransform(find_special_weekday: bool = True, find_special_month_day: bool = True)[source]

Bases: etna.transforms.base.Transform

Search for anomalies in values, marked this days as 1 (and return new column with 1 in corresponding places).

Notes

You can read more about other anomalies detection methods in: Time Series of Price Anomaly Detection

Create instance of _OneSegmentSpecialDaysTransform.

Parameters
  • find_special_weekday (bool) – flag, if True, find special weekdays in transform

  • find_special_month_day (bool) – flag, if True, find special monthdays in transform

Raises

ValueError: – if all the modes are False

Inherited-members

Methods

fit(df)

Fit _OneSegmentSpecialDaysTransform with data from df.

fit_transform(df)

May be reimplemented.

inverse_transform(df)

Inverse transforms dataframe.

transform(df)

Transform data from df with _OneSegmentSpecialDaysTransform and generate a column of special day flags.

fit(df: pandas.core.frame.DataFrame) etna.transforms.timestamp.special_days._OneSegmentSpecialDaysTransform[source]

Fit _OneSegmentSpecialDaysTransform with data from df.

Parameters

df (pd.DataFrame) – value series with index column in timestamp format

Return type

etna.transforms.timestamp.special_days._OneSegmentSpecialDaysTransform

transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Transform data from df with _OneSegmentSpecialDaysTransform and generate a column of special day flags.

Parameters

df (pd.DataFrame) – value series with index column in timestamp format

Returns

pd.DataFrame with ‘anomaly_weekday’, ‘anomaly_monthday’ or both of them columns no-timestamp indexed that contains 1 at i-th position if i-th day is a special day

Return type

pandas.core.frame.DataFrame