OutliersTransform

class OutliersTransform(in_column: str)[source]

Bases: etna.transforms.base.Transform, abc.ABC

Finds outliers in specific columns of DataFrame and replaces it with NaNs.

Create instance of OutliersTransform.

Parameters

in_column (str) – name of processed column

Inherited-members

Methods

detect_outliers(ts)

Call function for detection outliers with self parameters.

fit(df)

Find outliers using detection method.

fit_transform(df)

May be reimplemented.

inverse_transform(df)

Inverse transformation.

transform(df)

Replace found outliers with NaNs.

abstract detect_outliers(ts: etna.datasets.tsdataset.TSDataset) Dict[str, List[pandas._libs.tslibs.timestamps.Timestamp]][source]

Call function for detection outliers with self parameters.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – dataset to process

Returns

dict of outliers in format {segment: [outliers_timestamps]}

Return type

Dict[str, List[pandas._libs.tslibs.timestamps.Timestamp]]

fit(df: pandas.core.frame.DataFrame) etna.transforms.outliers.base.OutliersTransform[source]

Find outliers using detection method.

Parameters

df (pandas.core.frame.DataFrame) – dataframe with series to find outliers

Returns

result – instance with saved outliers

Return type

OutliersTransform

inverse_transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Inverse transformation. Returns back deleted values.

Parameters

df (pandas.core.frame.DataFrame) – data to transform

Returns

result – data with reconstructed values

Return type

pd.DataFrame

transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Replace found outliers with NaNs.

Parameters

df (pandas.core.frame.DataFrame) – transform in_column series of given dataframe

Returns

result – dataframe with in_column series with filled with NaNs

Return type

pd.DataFrame