WandbLogger¶
- class WandbLogger(name: Optional[str] = None, entity: Optional[str] = None, project: Optional[str] = None, job_type: Optional[str] = None, group: Optional[str] = None, tags: Optional[List[str]] = None, plot: bool = True, table: bool = True, name_prefix: str = '', config: Optional[Dict[str, Any]] = None, log_model: bool = False)[source]¶
Bases:
etna.loggers.base.BaseLogger
Weights&Biases logger.
Create instance of WandbLogger.
- Parameters
name (Optional[str]) – Wandb run name.
entity (Optional[str]) – An entity is a username or team name where you’re sending runs.
project (Optional[str]) – The name of the project where you’re sending the new run
job_type (Optional[str]) – Specify the type of run, which is useful when you’re grouping runs together into larger experiments using group.
group (Optional[str]) – Specify a group to organize individual runs into a larger experiment.
tags (Optional[List[str]]) – A list of strings, which will populate the list of tags on this run in the UI.
plot (bool) – Indicator for making and sending plots.
table (bool) – Indicator for making and sending tables.
name_prefix (str) – Prefix for the name field.
config (Optional[Dict[str, Any]]) – This sets wandb.config, a dictionary-like object for saving inputs to your job, like hyperparameters for a model or settings for a data preprocessing job.
log_model (bool) –
- Inherited-members
Methods
Finish experiment.
log
(msg, **kwargs)Log any event.
log_backtest_metrics
(ts, metrics_df, ...)Write metrics to logger.
log_backtest_run
(metrics, forecast, test)Backtest metrics from one fold to logger.
Reinit experiment.
start_experiment
([job_type, group])Start experiment.
Attributes
Init experiment.
Pytorch lightning loggers.
- log(msg: Union[str, Dict[str, Any]], **kwargs)[source]¶
Log any event.
e.g. “Fitted segment segment_name” to stderr output.
- Parameters
msg (Union[str, Dict[str, Any]]) – Message or dict to log
kwargs – Parameters for changing additional info in log message
Notes
We log nothing via current method in wandb case. Currently you could call
wandb.log
by hand if you need this.
- log_backtest_metrics(ts: TSDataset, metrics_df: pandas.core.frame.DataFrame, forecast_df: pandas.core.frame.DataFrame, fold_info_df: pandas.core.frame.DataFrame)[source]¶
Write metrics to logger.
- Parameters
ts (TSDataset) – TSDataset to with backtest data
metrics_df (pandas.core.frame.DataFrame) – Dataframe produced with
etna.pipeline.Pipeline._get_backtest_metrics()
forecast_df (pandas.core.frame.DataFrame) – Forecast from backtest
fold_info_df (pandas.core.frame.DataFrame) – Fold information from backtest
- log_backtest_run(metrics: pandas.core.frame.DataFrame, forecast: pandas.core.frame.DataFrame, test: pandas.core.frame.DataFrame)[source]¶
Backtest metrics from one fold to logger.
- Parameters
metrics (pandas.core.frame.DataFrame) – Dataframe with metrics from backtest fold
forecast (pandas.core.frame.DataFrame) – Dataframe with forecast
test (pandas.core.frame.DataFrame) – Dataframe with ground truth
- start_experiment(job_type: Optional[str] = None, group: Optional[str] = None, *args, **kwargs)[source]¶
Start experiment.
Complete logger initialization or reinitialize it before the next experiment with the same name.
- Parameters
job_type (Optional[str]) – Specify the type of run, which is useful when you’re grouping runs together into larger experiments using group.
group (Optional[str]) – Specify a group to organize individual runs into a larger experiment.
- property experiment¶
Init experiment.
- property pl_logger¶
Pytorch lightning loggers.