BaseFileLogger¶
- class BaseFileLogger[source]¶
Bases:
etna.loggers.base.BaseLogger
Base logger for logging files.
Create logger instance.
- Inherited-members
Methods
finish_experiment
(*args, **kwargs)Finish experiment.
log
(msg, **kwargs)Log any event.
log_backtest_metrics
(ts, metrics_df, ...)Write metrics to logger.
log_backtest_run
(metrics, forecast, test)Backtest metrics from one fold to logger.
start_experiment
([job_type, group])Start experiment within current experiment, it is used for separate different folds during backtest.
- log(msg: Union[str, Dict[str, Any]], **kwargs)[source]¶
Log any event.
This class does nothing with it, use other loggers to do it.
- Parameters
msg (Union[str, Dict[str, Any]]) – Message or dict to log
kwargs – Additional parameters for particular implementation
- log_backtest_metrics(ts: TSDataset, metrics_df: pandas.core.frame.DataFrame, forecast_df: pandas.core.frame.DataFrame, fold_info_df: pandas.core.frame.DataFrame)[source]¶
Write metrics to logger.
- Parameters
ts (TSDataset) – TSDataset to with backtest data
metrics_df (pandas.core.frame.DataFrame) – Dataframe produced with
etna.pipeline.Pipeline._get_backtest_metrics()
forecast_df (pandas.core.frame.DataFrame) – Forecast from backtest
fold_info_df (pandas.core.frame.DataFrame) – Fold information from backtest
Notes
If some exception during saving is raised, then it becomes a warning.
- log_backtest_run(metrics: pandas.core.frame.DataFrame, forecast: pandas.core.frame.DataFrame, test: pandas.core.frame.DataFrame)[source]¶
Backtest metrics from one fold to logger.
- Parameters
metrics (pandas.core.frame.DataFrame) – Dataframe with metrics from backtest fold
forecast (pandas.core.frame.DataFrame) – Dataframe with forecast
test (pandas.core.frame.DataFrame) – Dataframe with ground truth
Notes
If some exception during saving is raised, then it becomes a warning.
- abstract start_experiment(job_type: Optional[str] = None, group: Optional[str] = None, *args, **kwargs)[source]¶
Start experiment within current experiment, it is used for separate different folds during backtest.
- Parameters
job_type (Optional[str]) – Specify the type of run, which is useful when you’re grouping runs together into larger experiments using group.
group (Optional[str]) – Specify a group to organize individual runs into a larger experiment.