ConsoleLogger¶
- class ConsoleLogger(table: bool = True)[source]¶
Bases:
etna.loggers.base.BaseLogger
Log any events and metrics to stderr output. Uses loguru.
Create instance of ConsoleLogger.
- Parameters
table (bool) – Indicator for writing tables to the console
- Inherited-members
Methods
finish_experiment
(*args, **kwargs)Finish experiment.
log
(msg, **kwargs)Log any event.
log_backtest_metrics
(ts, metrics_df, ...)Write metrics to logger.
log_backtest_run
(metrics, forecast, test)Backtest metrics from one fold to logger.
start_experiment
(*args, **kwargs)Start experiment.
Attributes
Pytorch lightning loggers.
- log(msg: Union[str, Dict[str, Any]], **kwargs)[source]¶
Log any event.
e.g. “Fitted segment segment_name” to stderr output.
- Parameters
msg (Union[str, Dict[str, Any]]) – Message or dict to log
kwargs – Parameters for changing additional info in log message
- log_backtest_metrics(ts: TSDataset, metrics_df: pandas.core.frame.DataFrame, forecast_df: pandas.core.frame.DataFrame, fold_info_df: pandas.core.frame.DataFrame)[source]¶
Write metrics to logger.
- Parameters
ts (TSDataset) – TSDataset to with backtest data
metrics_df (pandas.core.frame.DataFrame) – Dataframe produced with
etna.pipeline.Pipeline._get_backtest_metrics()
forecast_df (pandas.core.frame.DataFrame) – Forecast from backtest
fold_info_df (pandas.core.frame.DataFrame) – Fold information from backtest
Notes
The result of logging will be different for
aggregate_metrics=True
andaggregate_metrics=False
options inbacktest()
.
- property pl_logger¶
Pytorch lightning loggers.