from typing import Dict
from typing import Sequence
from typing import Tuple
from typing import Union
import numpy as np
from etna.datasets import TSDataset
from etna.metrics.base import Metric
from etna.metrics.base import MetricAggregationMode
[docs]def dummy():
return np.nan
[docs]class _QuantileMetricMixin:
def _validate_tsdataset_quantiles(self, ts: TSDataset, quantiles: Sequence[float]) -> None:
"""Check if quantiles presented in y_pred."""
features = set(ts.df.columns.get_level_values("feature"))
for quantile in quantiles:
assert f"target_{quantile:.4g}" in features, f"Quantile {quantile} is not presented in tsdataset."
[docs]class Coverage(Metric, _QuantileMetricMixin):
"""Coverage metric for prediction intervals - precenteage of samples in the interval ``[lower quantile, upper quantile]``.
.. math::
Coverage(y\_true, y\_pred) = \\frac{\\sum_{i=0}^{n-1}{[ y\_true_i \\ge y\_pred_i^{lower\_quantile}] * [y\_true_i \\le y\_pred_i^{upper\_quantile}] }}{n}
Notes
-----
Works just if quantiles presented in y_pred
"""
def __init__(
self, quantiles: Tuple[float, float] = (0.025, 0.975), mode: str = MetricAggregationMode.per_segment, **kwargs
):
"""Init metric.
Parameters
----------
mode: 'macro' or 'per-segment'
metrics aggregation mode
kwargs:
metric's computation arguments
"""
super().__init__(mode=mode, metric_fn=dummy, **kwargs)
self.quantiles = quantiles
def __call__(self, y_true: TSDataset, y_pred: TSDataset) -> Union[float, Dict[str, float]]:
"""
Compute metric's value with y_true and y_pred.
Notes
-----
Note that if y_true and y_pred are not sorted Metric will sort it anyway
Parameters
----------
y_true:
dataset with true time series values
y_pred:
dataset with predicted time series values
Returns
-------
metric's value aggregated over segments or not (depends on mode)
"""
self._validate_segment_columns(y_true=y_true, y_pred=y_pred)
self._validate_tsdataset_quantiles(ts=y_pred, quantiles=self.quantiles)
segments = set(y_true.df.columns.get_level_values("segment"))
metrics_per_segment = {}
for segment in segments:
self._validate_timestamp_columns(
timestamp_true=y_true[:, segment, "target"].dropna().index,
timestamp_pred=y_pred[:, segment, "target"].dropna().index,
)
upper_quantile_flag = y_true[:, segment, "target"] <= y_pred[:, segment, f"target_{self.quantiles[1]:.4g}"]
lower_quantile_flag = y_true[:, segment, "target"] >= y_pred[:, segment, f"target_{self.quantiles[0]:.4g}"]
metrics_per_segment[segment] = np.mean(upper_quantile_flag * lower_quantile_flag)
metrics = self._aggregate_metrics(metrics_per_segment)
return metrics
[docs]class Width(Metric, _QuantileMetricMixin):
"""Mean width of prediction intervals.
.. math::
Width(y\_true, y\_pred) = \\frac{\\sum_{i=0}^{n-1}\\mid y\_pred_i^{upper\_quantile} - y\_pred_i^{lower\_quantile} \\mid}{n}
Notes
-----
Works just if quantiles presented in y_pred
"""
def __init__(
self, quantiles: Tuple[float, float] = (0.025, 0.975), mode: str = MetricAggregationMode.per_segment, **kwargs
):
"""Init metric.
Parameters
----------
mode: 'macro' or 'per-segment'
metrics aggregation mode
kwargs:
metric's computation arguments
"""
super().__init__(mode=mode, metric_fn=dummy, **kwargs)
self.quantiles = quantiles
def __call__(self, y_true: TSDataset, y_pred: TSDataset) -> Union[float, Dict[str, float]]:
"""
Compute metric's value with y_true and y_pred.
Notes
-----
Note that if y_true and y_pred are not sorted Metric will sort it anyway
Parameters
----------
y_true:
dataset with true time series values
y_pred:
dataset with predicted time series values
Returns
-------
metric's value aggregated over segments or not (depends on mode)
"""
self._validate_segment_columns(y_true=y_true, y_pred=y_pred)
self._validate_tsdataset_quantiles(ts=y_pred, quantiles=self.quantiles)
segments = set(y_true.df.columns.get_level_values("segment"))
metrics_per_segment = {}
for segment in segments:
self._validate_timestamp_columns(
timestamp_true=y_true[:, segment, "target"].dropna().index,
timestamp_pred=y_pred[:, segment, "target"].dropna().index,
)
upper_quantile = y_pred[:, segment, f"target_{self.quantiles[1]:.4g}"]
lower_quantile = y_pred[:, segment, f"target_{self.quantiles[0]:.4g}"]
metrics_per_segment[segment] = np.abs(lower_quantile - upper_quantile).mean()
metrics = self._aggregate_metrics(metrics_per_segment)
return metrics
__all__ = ["Coverage", "Width"]