import sys
import warnings
from abc import ABC
from abc import abstractmethod
from typing import TYPE_CHECKING
from typing import Any
from typing import Dict
import numpy as np
import pandas as pd
from etna.core import BaseMixin
if TYPE_CHECKING:
from etna.datasets import TSDataset
[docs]class Distance(ABC, BaseMixin):
"""Base class for distances between series."""
def __init__(self, trim_series: bool = False, inf_value: float = sys.float_info.max // 10 ** 200):
"""Init Distance.
Parameters
----------
trim_series:
* if True, get common (according to timestamp index) part of series and compute distance with it;
* if False, compute distance with given series without any modifications.
inf_value:
if two empty series given or series' indices interception is empty,
return ``inf_value`` as a distance between the series
"""
self.trim_series = trim_series
self.inf_value = inf_value
@abstractmethod
def _compute_distance(self, x1: np.ndarray, x2: np.ndarray) -> float:
"""Compute distance between two given arrays."""
pass
def __call__(self, x1: pd.Series, x2: pd.Series) -> float:
"""Compute distance between x1 and x2.
Parameters
----------
x1:
timestamp-indexed series
x2:
timestamp-indexed series
Returns
-------
float:
distance between x1 and x2
"""
if self.trim_series:
common_indices = x1.index.intersection(x2.index)
_x1, _x2 = x1[common_indices], x2[common_indices]
else:
_x1, _x2 = x1, x2
# TODO: better to avoid such comments
# if x1 and x2 have no interception with timestamp return inf_value as a distance
if _x1.empty and _x2.empty:
return self.inf_value
distance = self._compute_distance(x1=_x1.values, x2=_x2.values)
# TODO: better to avoid such comments
# use it to avoid clustering confusing: if the last if passes we need to clip all the distances
# to inf_value
distance = min(self.inf_value, distance)
return distance
@staticmethod
def _validate_dataset(ts: "TSDataset"):
"""Check that dataset does not contain NaNs."""
for segment in ts.segments:
series = ts[:, segment, "target"]
first_valid_index = 0
last_valid_index = series.reset_index(drop=True).last_valid_index()
series_length = last_valid_index - first_valid_index + 1
if len(series.dropna()) != series_length:
warnings.warn(
f"Timeseries contains NaN values, which will be dropped. "
f"If it is not desirable behaviour, handle them manually."
)
break
@abstractmethod
def _get_average(self, ts: "TSDataset") -> pd.DataFrame:
"""Get series that minimizes squared distance to given ones according to the Distance."""
pass
[docs] def get_average(self, ts: "TSDataset", **kwargs: Dict[str, Any]) -> pd.DataFrame:
"""Get series that minimizes squared distance to given ones according to the Distance.
Parameters
----------
ts:
TSDataset with series to be averaged
kwargs:
additional parameters for averaging
Returns
-------
pd.DataFrame:
dataframe with columns "timestamp" and "target" that contains the series
"""
self._validate_dataset(ts)
centroid = self._get_average(ts, **kwargs) # type: ignore
return centroid
__all__ = ["Distance"]